6 research outputs found

    Ideal Basis in Constructions Defined by Directed Graphs

    Full text link
    The present article continues the investigation of visible ideal bases in constructions defined using directed graphs. This notion is motivated by its applications for the design of classication systems. Our main theorem establishes that, for every balanced digraph and each idempotent semiring with identity element, the incidence semiring of the digraph has a convenient visible ideal basis. It also shows that the elements of the basis can always be used to generate ideals with the largest possible weight among the weights of all ideals in the incidence semiring

    Robust artificial neural networks and outlier detection. Technical report

    Get PDF
    Large outliers break down linear and nonlinear regression models. Robust regression methods allow one to filter out the outliers when building a model. By replacing the traditional least squares criterion with the least trimmed squares criterion, in which half of data is treated as potential outliers, one can fit accurate regression models to strongly contaminated data. High-breakdown methods have become very well established in linear regression, but have started being applied for non-linear regression only recently. In this work, we examine the problem of fitting artificial neural networks to contaminated data using least trimmed squares criterion. We introduce a penalized least trimmed squares criterion which prevents unnecessary removal of valid data. Training of ANNs leads to a challenging non-smooth global optimization problem. We compare the efficiency of several derivative-free optimization methods in solving it, and show that our approach identifies the outliers correctly when ANNs are used for nonlinear regression

    Global non-smooth optimization in robust multivariate regression

    Full text link
    Robust regression in statistics leads to challenging optimization problems. Here, we study one such problem, in which the objective is non-smooth, non-convex and expensive to calculate. We study the numerical performance of several derivative-free optimization algorithms with the aim of computing robust multivariate estimators. Our experiences demonstrate that the existing algorithms often fail to deliver optimal solutions. We introduce three new methods that use Powell\u27s derivative-free algorithm. The proposed methods are reliable and can be used when processing very large data sets containing outliers.<br /
    corecore